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Bose-Einstein condensation in an Einstein universe 
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Received 3 February 1978 

Abstract. The condensation of a non-relativistic ideal Bose gas in an Einstein universe is 
investigated. Explicit expressions for the condensate fraction No/N  and the specific heat 
are obtained by using the Poisson summation formula to express the summations as 
integrations plus corrections. It is shown that the finiteness of the system smoothes out the 
cusp-like singularity of the infinite system. A rigorous asymptotic analysis of the critical 
temperature and the specific heat maximum are given, and the relation with the scaling 
theory of finite size effects is briefly discussed. 

1. Introduction 

In an infinite space a system of non-interacting bosons shows a critical thermal 
behaviour at very low temperatures. It is known that when the temperature is lowered 
sufficiently (about 3 K for 4He) the particles seem to start accumulating in the lowest 
energy level. The specific heat is known to exhibit a discontinuity at this temperature. 
This phenomenon is called ‘Bose-Einstein condensation’ (full accounts are given in 
standard texts, e.g. London 1954). 

In finite systems, however, the geometry of the system is known to have a distinct 
role in determining the thermal behaviour of bosons. Several authors have investi- 
gated this role played by the geometry, specifically in thin films. Early studies 
(Osborne 1949, Ziman 1953) have shown that a finite Bose-Einstein system exhibits a 
rapid accumulation of particles into the ground state at a more or less well defined 
temperature which was shown to be a function of the dimensions of the system (Ziman 
1953). These studies and those that followed have served to elucidate the role played 
by the geometry of the system in determining the physical properties, especially near 
the condensation temperature To. Goble and Trainor (1966, 1967, 1968) studied the 
specific heat of a thin film of thickness D in a region near To. They found that the 
discontinuity of the bulk system is smoothed out and that the specific heat is a 
continuous function of the temperature being maximum at To(D). Their study also 
showed that the specific heat maximum, Co(D), is itself a monotonic function of the 
thickness D of the thin film, being maximum at a certain length D*. Pathria (1972) 
and later Pathria and his collaborators (Greenspoon and Pathria 1973, 1974, 1975, 
Zasada and Pathria 1976, 1977) carried out an extensive, rigorous asymptotic analysis 
of the thermodynamic behaviour of an ideal Bose gas confined to cuboidal geometries 
under a variety of boundary conditions. Their calcultions revealed, among several 
other things, the effects of the boundary conditions employed. 

In this paper we are going to investigate the thermodynamics of an ideal non- 
relativistic Bose gas at very low temperatures confined to the background geometry of 

0305-4770/78/0008-1603$03.00 @ 1978 The Institute of Physics 1603 



1604 M B Al’taie 

an Einstein universe, i.e. the geometry of a three-sphere, S3. Following the approach 
of Pathria and his collaborators we study the condensate fraction No/N and the 
specific heat. Two cases are considered, the spin-0 case (scalar field) and the spin-1 
case (vector field). The motivation behind these investigations is to extend the 
problem of Bose-Einstein condensation in finite geometries to curved space. As is 
well known, the Einstein universe is a closed finite system, described by the structure, 
TOS3. This feature makes it mathematically tractable, for example the summations 
involved are only over functions of one integer, as opposed to three for a cuboidal 
cavity. In § 2 the general formulation of the problem is given. In § 3 the case of 
spinless gas is considered where we investigate the condensation fraction No/N and 
the specific heat Cv(N, T, a, a) .  In each case we study the role played by the 
geometry in smoothing out the singularities of the bulk system. Other features of the 
system are also discussed. In § 4 the spin-1 gas is considered. 

2. Formulation of the problem 

In this section we give the general formulae, expressions and definitions needed for 
the calculation of the total number of particles N, the energy, and the specific heat of 
an ideal Bose gas. This formulation which was basically designed by Pathria is quite 
general and is independent of the shape, size, or boundary conditions employed. 

The Hamiltonian of an independent Bose-Einstein system is 

where a: and ai are the creation and annihilation operators for the single-particle 
state which has energy ei. The following commutation relations hold: 

The total energy of the system is given by: 

E = 1 diei(ni)  = diei(e5(‘i-”)- 1)-’ 
i i 

where di is the degeneracy associated with the ith energy state, p = l / k T  and p is the 
chemical potential determined by the condition 

In finite geometries ei usually depends on the dimensions of the system. This comes 
about naturally through the influence of the boundary conditions imposed on the 
wavefunction. Thus one would expect that the thermodynamical functions will be 
functions of dimensions. The specific heat is defined as 

- - (3 - N , V  

Now define 
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and 

where (Y = -w/kT. If we differentiate equation (3) with respect to T keeping fixed N 
and V, then using (6) and (7) we get 

Cv = k[G2-(G:/Go)]. (8 1 
Also it is not difficult (but tedious) to show that, 

and 

(F )~ ,~=${  a' cv 6 ( G ~ - g ) - & [ G ; - 2 ( 2 ) G ;  +(Z)'Gb] 2 

-6 [G;-3(2)G;+3(2) 'G;  -($)'Gb] 

+ [ G r; - 4( 5) G L; + 6( "') G; - 4 ("') G + ("') G g] 1 
Go GQ Go GO 

where 

T, V 

and 

G : = - ( g )  aG 
T, V 

The basic problem in these calculations is the evaluation of 20, from which it would be 
possible to deduce all the information needed. This means that we need to perform 
the summation in (6). In this paper the summation in (6) is not replaced by an 
integration directly as is the custom when an infinite system is considered. Instead we 
prefer to perform the sums as they arise to avoid the inaccuracies which accompany 
the replacement of a sum by an integral. For this purpose we use the following form of 
the Poisson summation formula (see Titchmarsh 1948) 

m W 

&O)+ f f(n) = Q f ( t )  dt + 2 f Im f ( t >  cos(2md) dt = lo+ 2 1 1,. (13) 
n = l  m = l  0 m = l  

The first integral on  the right-hand side Io, is the value which one gets if the 
summation is directly replaced by an integration. Thus this would always represent 
the bulk result. The second term is the finite size correction and contains the effect of 
the geometry. 

Now that some technical foundations have been clarified we come to define the 
criteria we use for condensation. In fact there are several definitions in finite systems. 
These are explained by Goble and Trainor (1966). Pajkowski and Pathria (1977) also 
considered this question and found that there are three basic types of criteria for 
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condensation in finite systems. These are: (i) macroscopic; (ii) microscopic; (iii) hybrid 
ones which are based on the ground state properties of the system. 

In this paper the condensation region is defined such that a large number of 
particles is found occupying the ground state. This implies that a << 1. The conden- 
sation temperature is defined according to the macroscopic criterion, i.e., TO is the 
temperature at which Cv is maximum. 

Throughout this paper we use units ('absolute units') in which h = c = G = 1. 

3. Non-relativistic spinless ideal gas 

The conformally coupled massive scalar field in the Einstein universe satisfies the 
equation 

C!q5+kRq5+m2q5=0 (14) 

where 0 = V,Vw, R = 6 /a2  is the scalar curvature and a is the radius of S3, the spatial 
part of the Einstein universe. Equation (14) has been considered by many authors 
(see for example Schrodinger 1938). The eigen-frequencies are found to be 

~ " = u , , = - [ ( n + l ) ~ + m  1 2 a 2 1 112 

a 

with degeneracy 

dn = (n + 1)2 

The non-relativistic approximation of (15) is 

(n + 1)' 
2ma2 

n = 0, 1, 2, . . 

E =- n -  

when the rest mass energy eo = m is omitted. 
The number of particles is defined generally in (4). For our specific case we have, 

m - 
l ) - I  

2 @'n2+a  - N = z 0 =  1 n (e 
n = l  

where 

with 

as the mean thermal wavelength of the particle. It is a measure of the temperature of 
the system. 

To handle the summation in (17) we use the Poisson summation formula (13) by 
which the 'bulk term' lo is evaluated as (see appendix) 
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For the integral Im, up to terms proportional to exp[ - (u/A)~]  where a >>A,  we get 

From the definition (6) it is possible to show that 2, can be calculated from the 
relation (Pathria 1972), 

That is, to get 2, from Zo, we have to differentiate Zo with respect to P s times (at 
fixed a) and then integrate with respect to Q s times, multiplying the result by P’ at the 
end. If this is done we get, 

312 

z, = :( L) [r (s + $)~3/2(Q ) - 2 (- 1 )sa “4s (2 11. (25) 
2 P’  

Having obtained the basic expressions we can proceed to investigate the various 
thermodynamic functions. If Q << 1 expression (22) yields 

1 1/2  2 
N - Zo = 4 7r :[ z r  S ( l ) -  rali2( 1 +-)I e2’ - 1 

or, in terms of the ratio N /  V, 

We have use the expansion 

F3,2(Q)’:S(~)-27T1/2Q1/2 

with ((s) being the Riemann zeta function and I is the mean interparticle distance. In 
the limit a + 0;) we have 

This is just the well known bulk result. Note that we have considered that in the limit 
V + CO, N /  V remains constant, the usual thermodynamical limit. From (26) we can 
write, 

(!)3=S($)-2r 1/2 Q 1/2  cothy. 
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Using (28)  and the definition of y in (21) we get, 

or 

Set Ti To(w)  = x, then we have 

y coth y = ~ ( l ( $ ) ” ’ ~ ( ~ ) x ’ / ~ ( l  1 - x - ~ / ~ ) .  ( 3 1 )  

This equation shows explicitly the dependence of the thermogeometric parameter, 
y, on temperature (we use the scaled temperature x just to keep the terms involved 
dimensionless). For a given a / i  and given x we can solve ( 3 1 )  for y. The set of 
solutions for a / r =  10 and a / [ =  50 are given in figure 1 where (.rr2+y2)’/’ is plotted 

r 

T / G  Iw) 

Figure 1. The thermogeometric parameter y for S3 geometry as a function of the scaled 
temperature T/T0(m). Curve A is for N = 1.97 x lo4, curve B is for N = 2.46 x lo6.  The 
broken line is for the corresponding bulk behaviour. 

against x, and not T, to simplify the figure. Notice that at T = 0 we have y = Ti. This 
result is not surprising, as was pointed out by Pathria, because the zero-temperature 
limit of the chemical potential, F ,  is € 1  which is just 1/2ma2 accordingly the limiting 
value of a is 

1 - 
2ma‘kT 4~ a 
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and by (21) the corresponding value of y is Ti. This means simply that the cor- 
responding value of a is negative. For a given value of a/  r, y becomes real at a certain 
value of the scaled temperature x .  This will be calculated below. 

It 'is clear from figure 1 that as ( a / [ )  increases y tends to a step function. This 
makes the thermodynamical functions considered (which are essentially functions of 
y2) exhibit a discontinuous behaviour in an infinite system. Herein lies the importance 
of the thermogeometric parameter y. Now at x = 1 (T = T0(co)) we have 

y coth y = 0. (32)  

A solution of this equation is 

y = i7r/2. 

It is important to know at what value of x y 2  beomes zero. Since this will define for 
us the transition point at which y changes from imaginary to real values. This is 
known if we solve the equation 

The solution of (34)  in the range x = 1 and for a / T =  10 is found to be: 

x = 1.011. (34)  

After the nature of the parameter y has become clear we consider the calculation of 
the condensate fraction NOIN. The number of particles in the ground state at 
temperature T is given by 

For a << 1 
-1 

NO = [ ($+ 1)a] 

From (36)  and (26)  we get, 

The first term in (37)  is precisely the expression for No in the bulk system, the second 
and third terms, therefore, represent the finite size effect, or corrections. Using (31) 
equation (37)  can be further simplified. We get, 

This expresses the condensate fraction N o / N  as a function of temperature and 
dimensions. For a given value a / i ,  N o / N  is a function of the scaled temperature x 
only. This is plotted in figure 2. As the temperature decreases the number of particles 
in the ground state grows. Here we notice two distinct effects of the finiteness of the 
system on the condensate fraction, these are: (i) the bulk condensate fraction is 
enhanced; (ii) the discontinuity at x = 1 is smoothed out. 



1610 M B Al'taie 

T /  T, (-1 

Figure 2. Temperature dependence of the condensate fraction N o / N  for S3 filled with 
1.97 x lo4 spinless particles. The full curve shows the bulk behaviour. 

In finite systems the energy levels are discrete. This will shift the spectrum 
upwards which, in turn, will shrink the occupation number ( n i )  causing the 'enhance- 
ment' recorded in figure 2. The difference between the finite system condensate 
fraction and the bulk condensate fraction is given in figure 3. This figure shows clearly 
the smoothing out of the singularity at x = 1 and shows the fast drop of the condensate 
fraction after x = 1. The effect of large radius a is also clear. For large a the difference 
becomes small, vanishing asymptotically. 

0 01- 
x - a - 

2, 

5 - 
P 

2" , 002- 
- 

0 0 2  O L  0 6  0 8  10 12 

T /  T, (-1 

Figure 3. Condensate fraction in excess of the bulk value. Curve A is for N = 1.97 x lo4, 
curve B is for N = 2.46 x lo6. 

3.1. The specific heat 

We now wish to investigate the specific heat Cv and discuss the possibility of a 
transition at the condensation temperature TO. The general expression for the specific 
heat is given by equation (8). To calculate CV we need to know GO, G1 and G2. 
These functions can be obtained easily from 2, using relation (5). In the critical 
region, that is the region in which 1y << 1 and y =O(l)), we have, to the first order in 
(i/a), 

'( ') 3/2 (W 1 1/2  5 ( 2 ) - ~ 1 y 1 ' 2 ~ ~ t h  1 y ) .  ZO'? 

Therefore 
?r 1 3/2 

4 P' 
GO=-(-) (coth y - y  cosech2y)a-'/2 
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Figure 4. Specific heat against the scaled temperature T/T0(w).  This curve shows the 
continuous behaviour of the specific heat as a function of temperature and the disap- 
pearance of the cusp-like singularity of the bulk system. 

yo which in turn can be used to calculate To using equation (31). The relevant 
contribution to equation (9) seems to come from G2, G:/Go, Gi  and (G1/Go)’Gb 
terms only. Expressions for G2 and G:/Go for a << 1 are given in (42) and (43), we 
also get 

(2) Gb =-(4) 1 2 8 1 ~ ” ~  p 

If (42), (43) and (48) are substituted in (9) we get 

3 27 312 (2 coth y + 2y cosech’ y + 4y2 cosech’ y coth y) 
coth y - y cosech2 y ( l ( T ) )  

(48) 

where 

2 coth y + 2 y  cosech2 y +4y2 cosech2 y coth y 
(coth y - y cosech’ y)’ f(Y)= 

Equating (49) to zero we get (y = yo) 
45 TIT&) = %t(Z>)3f(~o>, 

orf(yo)= 1.577. The numerical solution of (51) shows that 

y o =  1.887. ( 5 2 )  

Now we consider the analysis of the critical temperature To and the specific heat Cv in 
the asymptotic region a >>A. We consider the first-order approximation in ( i /u)  only. 

In this region ( A o ( ~ )  = &,(a)) equation (31) gives, 
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1.7 

The specific heat maximum Co(a)  can be derived from (46). In the region of interest 
and to the first order ( r / a )  we have 

I I I I I I I I I I 

= 1.926-0.134 - . 13 (54) 

The results of (53) and (54) are shown in figures 5 and 6 respectively. We notice that 
the specific heat maximum is a monotonic function of the size of the system and no 
maximum is found as is the case for a cuboidal geometry under Dirichlet boundary 
conditions (Pathria 1972, Greenspoon and Pathria 1973). The specific heat maximum 

o/T  

Figure 5. Siee dependence of the condensate temperature To(a) at which the specific heat 
is maximum. The full curve is for spin-0 particles, the broken curve is for spin-1 particles, 

Figure 6. Specific heat maximum C&) as a function of the size of S3. The full curve is for 
spin-0 particles, the broken curve is for spin-1 particles. The horizontal line corresponds 
to the bulk value Co(co). 
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increases asymptotically to reach the bulk value for large a.  The critical temperature 
drops to lower values as a increases. These results seem to be a general feature of 
periodic boundary conditions. 

4. Non-relativistic spin-1 ideal gas 

In this section we consider the Einstein universe to be filled with a non-relativistic 
ideal gas of spin-1 particles. The equation of motion has been considered by 
Schrodinger (1938) and the solution yields the following energy spectrum: 

1 2 2 2 1 / 2  ~ , = - ( n  + m  a ) 
a 

with degeneracy 

d,  = 2 ( n 2 -  1) where n = 2 , 3 , .  . . . 

( 5 5 )  

In the non-relativistic limit (with rest mass energy neglected) the energy spectrum (55) 
gives: 

(57) 
2 2 ~ , = n  / 2 m a  . 

Using this spectrum the total number of particles is then given by 
00 

N = 2 ( n 2 -  l)(eS’n2+a - 1)-’. 
n = 2  

The sum in (58) is performed by using the Poisson summation formula, equation 
(4) ,  and the result found to be, 

1 3/2 

N = (e“- l ) - ’ + ( ~ )  (r ($)F3,2(~) -2~~1/2S(2y))  

where symbols are as defined before. The first term arises because the n = 0 term in 
(58) is non-zero. The second term is basically twice that of the scalar case considered 
in the previous section. The third term arises because of the ‘spin curvature’ coupling 
which is described mathematically by the coefficients a, of the Schwinger-De Witt 
expansion (De Witt 1965). Both the first and the third terms disappear when a +CO. 

In this limit we have 

This is just half the known bulk result. 

thermogeometrical parameter y. We have, 
Let us now investigate the information contained in (59). First we look at the 

($) =$=$[?(:) + 2 5 ( $ ) - 4 v 1 ’ 2 a 1 / 2  coth y +-(-) 1 h 2  ( l ( $ ) - ~ ~ ’ ~ a - ” ~  coth y)] 
v a  
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i f  a >>A ) then to first order in ( [ / a )  we obtain: 
- 

2T  
coth y -T=x1/2(1 Y - ~ - ~ / ~ ) ( i ) ( 2 1 ( $ ) ) ~ / ~ .  a 

This is the equation which expresses the temperature dependence of y .  Again, for a 
given ( r / a )  we can solve for y as a function of the scaled temperature x, where now we 
have y = 27ri at .x = 0. rhis is because in the zero-temperature limit we have 

which means that y(T  = 0) = 2ni .  
The points x at which y = 0 can be found from (62) .  This gives: 

Solving this equation we can find the point x at which y becomes real. This point 
approaches unity as a + CCI. This significance of the thermogeometrical parameter y is 
as explained earlier. 

4.1. The condensate fraction No/ N 

We now wish to see how the number of particles in the ground state ( n  = 2 )  varies, in 
proportion to the total number N, as a function of the scaled temperature x .  

The number of particles in the ground state at temperature T is given by 

No = 6[exp(P'n2+a)]-', (64) 

If a << 1 this becomes 

2 4 ~ '  

From equation (61) it is easy to see that 

This is an alternative (and simpler) derivation to the one for the corresponding 
quantity in the spin-0 case. Here again the singularity (NOIN = 0) at x = 1 of the bulk 
system is smoothed out and No/N  goes to zero asymptotically for large values of x. 
The bulk condensate fraction is enhanced in this case too. 

4.2. The specific heat 

We can calculate the specific heat in the neighbourhood of the condensate point x,,. 
The general expression for CV is given by equation (9). It is clear that we need the 
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functions Z,. Using (25) and (59) we find 

1/2  

- (i) [r(s + $)F,++!(~)  + 2 V(- 1 )sa s--ts(2y )I. (67) 

This expression is valid for s > 0. The expression for ZO is given by (59). Now we 
have: 

1 7r 1 3 /2  57 1 

ff 2 P  2 P  
cY-1/2(coth y - y  cosech2 y)--(:) a -3 /2 (~o th  y + y  cosech2 y )  

(68) 
312 

G -- (i) ($l(?) - d '12(3 coth y - y cosech2 y ) 2 

(69) 
3 

7T - ,c~ ' /~(coth y - y  cosech2 y )  
2Y 

and 

Using these expressions and the general expression of the specific heat, equation (8), 
we obtain: 

$2( i r2+T(coth  Y 2  y - y  cosech2 y )  
Nk 

2 
7T 

--y(coth y + y cosech2 y) 
2 

This expression gives the values of Cv in the neighbourhood of the condensation 
point xo .  A more general expression can be obtained if we consider the exact 
expressions for 2, and G,. For our main purposes expression (71) is sufficient. The 
specific heat is seen to have a continuous maximum at x = x O  -- 1.04. If we equate the 
first derivative of Cv with respect to T at constant number N and volume V to zero, 
we get: 

where 

f (y)=(2+-p(cothy+y Y 3  cosech'y-2y2cosech2y cothy)--(3cothy Y 
ir 4 

+3y cosech2 y -2y2 cosech2 y coth y))[ (-) I T 2  +2(coth Y y - y  cosech2 y) 
Y 

r3 2 
7T 

--(coth y + y cosech' y) . 
2 (73) 
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Thus to find the vaiue of y o  at Cv maximum we have to solve 

f(yo)= 0.119 (74) 

which yields 

yo  = 0.906i. (75) 

Again, /yo]  is of order of unity as expected. 
We now discuss the asymptotic dependence of the critical temperature To(a)  on 

the size of the system. From (62) and in the neighbourhood of To(oo), to the first order 
in ( r / a )  we have: 

and for the value of yo in (75) we get 

The results are plotted in figure 5. 
It is also interesting to know how the specific heat maximum (or rather (Co /Nk) )  

changes with the size of the system. From (21) and for imaginary values of y we have: 

9 Y: ( i l a  1 
X 1 - 9 2 6 - 7  2 ( 3 2 ~  T -2yo(cot yo-yocosec' yo)-br2yo(cot yo+yocosec2 yo) 

(78) 
For the given value of yo and to first order in ( i / a )  we obtain 

Therefore the specific heat maximum increases with the size of the system ultimately 
reaching the bulk value for very large radius a. The results are shown in figure 6. 

5. Discussion 

In the previous sections we have studied the behaviour of an ideal non-relativistic 
Bose gas confined to the background geometry of an Einstein universe. The general 
outcome of the calculation was in fact within what one would expect of the finite 
geometry effects, and in this respect we find that the results are consistent with the 
scaling theory for finite size effects (Fisher and Barber 1972). 

The scaling theory works if and only if 

a / b  1 

and 
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Thus, to the first order in (flu) one would expect the specific heat CV(T), in the 
critical region, to be governed by the variable 

2 = (;) 
where 

This is indeed true. From equation (31) we can write, 

Clearly, the scaling variable z is a function of y alone (e.g. for y = yo, t = 0). It follows 
that y is in turn a function of z alone. This means that the specific heat Cv(T) given 
by (46) is governed by the variable z only. 

Similar arguments apply in the case of spin-1 discussed in 0 4. 
The curved nature and compactness of the Einstein space is reflected in the energy 

spectrum which in particular, shows that the ground state energy is non-zero. This is 
caused by the conformal invariance factor R/6, in the scalar wave equation, which 
shifts the energy spectrum upwards. A non-zero ground state energy makes the 
calculations run in an analogous fashion to that of a box with Dirichlet boundary 
conditions (I@) = 0), the thermogeometrical parameter y is imaginary for T < T,(co), 
but the asymptotic analysis of the specific heat shows (see figure 6) that the specific 
heat maximum is a monotonic function of the size of the system with none of the 
special features (e.g. a maximum at a certain size) of the box under Dirichlet boundary 
conditions. This is because basically we are using periadic boundary conditions and 
not the Dirichlet ones. 

It is observed that the specific heat maximum ociurs when y acquires a certain 
characteristic value which is independent of the size of the system. This supports the 
law of correspondence first noticed by Greenspoon and Pathria (1 974). 

A look at the results of the asymptotic analysis for the spin-0 and spin-1 cases 
shows that the differences are only minor quantitative ones and not qualitative. This is 
attributed to the differences in the ground state energies and degeneracies. 

An extension of the present problem into the relativistic regime may be interesting 
since it is observed (Landsberg and Dunning-Davies 1965) that there are some 
fundamental departures from the non-relativistic case. This may be reported else- 
where. 
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Appendix. Calculations of Zo 

We have 

Using the Poisson summation formula, (13), the sum in (A. l )  can be written, 

with F,(a) being the Bose-Einstein function discussed by Robinson (1951). The 
Dirichlet series of F,(a) is given by 

For a << 1 we use the following expansions: 

Now concerning the I, integral we have, 

where we have used (Gradshteyn and Ryzhik (1965) 

lorn cos(bx) e-@x2 dx = - '( - r)1'2 e-b2/4D 

2 P  
3/2 1/2 and define y = 2.rr a ( a / A )  and p = la, then 

so that, 
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Here we impose some approximations. Change the summation over I into an integra- 
tion over p to give, 

Using the Laplace transform (Abramowitz and Stegun 1968) 

we get 

so that 

where 

Note that in converting the summation over 1 into an integration over p we have 
implied actually an approximation of the order of exp[- (a/A)']  which is negligibly 
small if a >>A. 
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